
BRIEF COMMUNICATION

THERMOCAPILLARY AND BUOYANT BUBBLE MOTION

WITH VARIABLE VISCOSITY

R. BALASUBRAMANIAM

National Center for Microgravity Research on Fluids and Combustion, NASA Lewis Research Center,
Cleveland, OH 44135, USA

(Received 4 June 1997; in revised form 5 October 1997)

1. INTRODUCTION

The purpose of this paper is to analyze the combined e�ect of thermocapillary migration and
buoyancy induced motion of a gas bubble in an immiscible liquid in which a uniform tempera-
ture gradient exists. It is assumed that the Reynolds number of the motion is large and the
bubble is undeformed. The directions of the gravity vector and the temperature gradient are
assumed to be parallel or anti-parallel.

Thermocapillary migration of bubbles and drops is important in microgravity and has been
reviewed by Subramanian (1992). Recent results of a space¯ight experiment have been reported
by Balasubramaniam et al. (1996). Thermocapillary migration and its interaction with buoyancy
are also important under normal gravity in preparation for space experiments (Srividya 1993)
and for special applications such as the processing of bi-metallic composites where gravitational
sedimentation has to be reduced (Zhang et al. 1993; Prinz and Romero 1992).

The thermocapillary motion of a bubble for large values of the Reynolds number in the
absence of buoyancy has been analyzed both in the limit of zero Marangoni numbers (Crespo
and Manuel 1983; Balasubramaniam and Chai 1987) and large Marangoni numbers (Crespo
and Jimenez-Fernandez 1991; Balasubramaniam and Subramanian 1996). In all these studies
the liquid viscosity was assumed to be a constant, independent of the local temperature. The
fundamental conclusion of the studies at large Marangoni numbers is that a suitably scaled
result for the bubble velocity tends to a non-zero asymptotic value. The goal of the present
work is ®rst to determine the e�ects of buoyancy on this asymptotic limit when the Peclet
number is large and second to address the issue of temperature dependence of the viscosity.
Both these questions are examined when the Reynolds number is large as this will permit simpli-
®cation in the description of the ¯ow ®eld.

2 . PROBLEM FORMULATION

The following assumptions are made: the ¯ow is governed by the incompressible Navier±
Stokes equations, with surface tension and viscosity being linearly dependent on the tempera-
ture; the Reynolds number of the ¯ow is large, thus to leading order the ¯ow is given by poten-
tial ¯ow everywhere (including the momentum boundary layer, Moore 1963; Balasubramaniam
and Subramanian 1996); the bubble is spherical in shape, that is, the Weber number is su�-
ciently small such that shape deformations are negligible; the Peclet number of the motion is
large; the steady gravity vector and the temperature gradient are either parallel or anti-parallel
so that before the bubble is introduced the liquid is quiescentÐin the unstably strati®ed case it
is assumed that the critical Rayleigh number for Rayleigh±Benard instability is not exceeded.
The motion due to natural convection is not considered.
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Note that for large Reynolds numbers the leading order ¯ow ®eld (in a large Re asymptotic

expansion) is given by potential ¯ow regardless of whether viscosity is constant or variable. It is

this crucial fact that enables the results given by Balasubramaniam and Subramanian (1996) to

be extended when viscosity variations are included.

We will assume that thermocapillarity is predominant over buoyancy and the bubble moves

in the direction of the temperature gradient. As will be shown later, it is trivial to write the

results for a case when buoyancy is dominant and the bubble moves in a direction opposite to

the temperature gradient. In a reference frame moving with the bubble the scaled velocity ®eld

given by potential ¯ow is

u � ÿ�1 cos y 1ÿ 1

r3
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2r3

� �
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Here u, � are the radial and tangential velocities in spherical polar coordinates whose origin

moves with the bubble. �1 is the bubble velocity that is to be determined. The Reynolds and

Peclet numbers are de®ned as Re = VRR1/� and Pe = VRR1/a where �, a are the kinematic

viscosity and thermal di�usivity of the liquid. The thermocapillary velocity scale is

VR=(ÿsT)AR1/m0 where sT is the rate of change of surface tension with temperature that is

assumed to be a negative constant, A is the magnitude of the applied temperature gradient, R1

is the radius of the bubble and m0 is the viscosity of the undisturbed liquid at the same location

as the center of the bubble. For purely thermocapillary ¯ow, the Peclet number is called the

Marangoni

number.

The energy equation for the scaled transformed temperature T=�TÿAVR�1t/AR1 where �T is

the physical temperature and t denotes time is

v1 � u � rT � 1
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In the energy equation we have assumed a quasi-steady distribution of temperature. The steady

state assumption is strictly valid only for constant �1 which implies a constant viscosity.

The bubble velocity is determined from the conservation of mechanical energy: the work done

by the thermocapillary shear stress and the buoyancy force is equal to the rate at which kinetic

energy is dissipated by viscosity. The scaled mechanical energy conservation equation can be

written as
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where Bo = (rLÿrG)gR1/((ÿsT)A) is a dynamic Bond number. The terms on the left hand side

are the contributions to the rate of work done by the thermocapillary stress and buoyancy

forces respectively. The plus sign for the rate of work done by the buoyancy force is used when

the bubble moves in the direction of the buoyancy force acting on it; the minus sign is used if it

moves in the opposite direction. The right hand side of [3] represents the rate of energy dissipa-

tion by viscous forces for the potential ¯ow ®eld. In deriving [3] the rate of change of kinetic

energy in the liquid is neglected; this can be shown to be valid when Re dm/dT AR1/m<<1.
When viscosity is constant and gravitational forces are absent, Balasubramaniam and

Subramanian (1996) show that the asymptotic solution for large Pe (or Ma) is
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where t and T denote the temperature ®eld in the thermal boundary layer and outside it, re-
spectively,
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(D(x) denotes Dawson's function, see Abramowitz and Stegun 1968). The bubble velocity v10 is
computed from [3] and [5] to be �10=1/3ÿ (ln 3)/8.

One way to accomodate the variation of viscosity with temperature in the results from a
constant property theory is via a quasi-static approach. Basically the reference value for the
viscosity m0 in the expression for the velocity scale VR is permitted to depend on the location of
the bubble. Recall that m0 is the viscosity of the undisturbed liquid in a plane perpendicular to
the direction of motion that contains the center of the bubble; in the quasi-static approach this
is permitted to be a function of the temperature of the undisturbed liquid. For small E, it is seen
from [6] that the temperature on the bubble surface scales as ln E, while the temperature gradient
itself is O(1). Thus the ¯uid near the bubble is cooler than further away, in a plane perpendicu-
lar to the direction of motion. Since the viscosity of the liquid increases with decreasing tem-
perature, the liquid is more viscous near the bubble than further away from it in this plane.
Thus the actual migration speed of the bubble is expected to decrease compared to a quasi-static
prediction that uses the reference viscosity m0. Balasubramaniam and Subramanian (1996)
explain that the relatively cold condition prevalent at the bubble surface for small E is related to
the long transit times, near the front stagnation point, of ¯uid elements in a thin bundle that
surround the front stagnation streamline.

3 . RESULTS

We ®rst assume that the viscosity is constant during the motion of the bubble, but the Bond
number is not equal to zero. When the Peclet number is large, the temperature ®eld is given by
[5] and [6]. What is altered by the buoyancy force is the migration velocity of the bubble.
Substituting [1] and [6] into [3] the bubble velocity may be determined to be

�10 � 1

3
ÿ 1

8
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The direction of motion of the bubble is the direction of the temperature gradient when sT is
negative. The positive sign in the above formula is used when rL, rG and g are such that buoy-
ancy enhances the motion; the negative sign is used otherwise. Even though the problem for �1
is non-linear, [7] reveals that in the limit of large values for Re and Pe the bubble velocity at
leading order is a superposition of the thermocapillary and buoyancy induced migration
velocities. This linear behavior is unusual and obtains in this limit because the potential velocity
®eld for large Re [1] is coupled to the temperature ®eld solely via the quantity �1 that acts as a
scale factor; the ¯ow ®eld is otherwise unaltered. Further, when Pe is large, [6] reveals that the
temperature gradient at the bubble surface that is responsible for the ¯ow is independent of �1.
For values of the Reynolds and Peclet numbers that are not large, the linear superposition of
the thermocapillary and buoyancy induced migration velocities will not be valid.

The viscosity of the liquid is now permitted to be a linear function of temperature. As the
bubble moves toward warmer liquid, the temperature at the reference location for the viscosity
changes continually. Thus m0 is a time-dependent quantity. The viscosity variation with tempera-
ture is expressed as
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Here dm/dT is taken to be a constant and is typically negative for liquids. In reality the viscosity

has an exponential dependence on the absolute temperature. However it can be shown that

H�H(u�u) in the integrand in the right hand side of [3] decays as rÿ8. Thus the principal contri-

bution to the integral occurs in a region close to the bubble. When the viscosity is a non-linear

function of the temperature, an average value for dm/dT in this region can be calculated and

used in [8].

When the transport of energy is assumed to be quasi-static, the temperature ®eld around the

bubble is described by [5] and [6]. Substituting [1], [5] and [8] into [3], the scaled rate of energy

dissipation by viscous forces may be obtained as
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The triple integral has been evaluated numerically. The use of the outer temperature ®eld [5] in

determining _E requires some comment. As mentioned before the main contribution to the inte-

gral that determines _E occurs in a region near the bubble where H�H(u�u) is non-vanishing. This
region is expected to be much thicker than the thermal boundary layer which scales as Peÿ1/2 in

the limit Pe 41. Thus the contribution to the dissipation within the thermal boundary layer

appears negligible. However, the outer temperature ®eld T given by [5] contains a logarithmic

singularity of the form (1/3) ln(rÿ 1) (see Balasubramaniam and Subramanian 1996). While this

singularity is integrable in the evaluation of K in [10], such an integrable form of the integrand

in K is a consequence of the assumption that the viscosity varies linearly with temperature. If a

more general viscosity-temperature relationship such as an exponential variation is used, the use

of the outer temperature ®eld alone will not yield a ®nite value for _E and the existence of the

thermal boundary layer cannot be ignored. The expression for _E will be integrable if a compo-

site temperature ®eld constructed from [5] and [6] is used in the right hand side of [3].

The temperature on the bubble surface given by [6] is used in the left hand side of [3] to deter-

mine the rate at which work is done by the thermocapillary stress. Using the expression for the

rate of dissipation of energy given by [9] the migration velocity of the bubble may be determined

to be
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As before the plus sign for the buoyancy term is used when buoyancy enhances the motion of

the bubble. Consider the thermocapillary motion of a bubble in reduced gravity in a silicone oil

with a room temperature viscosity of 10 cp. For this liquid (1/m0)(dm/dT) is approximately

ÿ0.02 Kÿ1 and sT is approximately ÿ0.06 mN/m. For a bubble size of 10 mm and a temperature

gradient of 1.5 K/mm, the Reynolds and Marangoni numbers are approximately 20 and 2000 re-

spectively. [11] predicts that the temperature dependence of viscosity reduces the

migration speed of the bubble by about 7.3%. However, Re (dm/dT)AR1/m0<<1 is not satis®ed

in this example and the theory that neglects the rate of change of kinetic energy is not really

acceptable.
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Equation [11] can be generalized for the dimensional bubble migration velocity vector V10 as

V10 �
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where HT1 is the applied temperature gradient whose magnitude is A and g is the gravity
vector that is either parallel or anti-parallel to the temperature gradient. The variation of
viscosity with temperature reduces the bubble speed when it moves in the direction of the
temperature gradient and enhances it when it moves in the opposite direction.
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